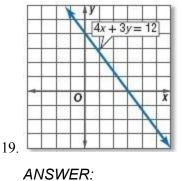
Determine whether each equation is a linear equation. Write *yes* or *no*. If yes, write the equation in standard form.

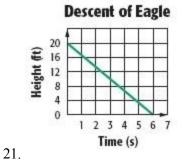

13. $5x + y^2 = 25$ ANSWER: no 14. 8 + y = 4xANSWER: yes; 4x - y = 815. 9xy - 6x = 7ANSWER: no 16. $4y^2 + 9 = -4$ ANSWER: no 17. 12x = 7y - 10yANSWER: yes; 4x + y = 0

18. y = 4x + x

ANSWER:

yes; 5x - y = 0

Find the *x*- and *y*-intercepts of the graph of each linear function.


3,4

X	Y
-3	-1
-2	0
-1	1
0	2
1	3

ANSWER:

-2, 2

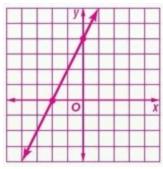
Find the x- and y-intercepts of each linear function. Describe what the intercepts mean.

ANSWER:

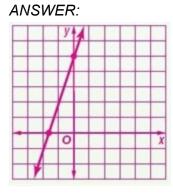
6, 20; The x-intercept represents the number of seconds that it takes the Eagle to land. The y-intercept represents the initial height of the eagle.

Eva's Distance from Home			
Time (min)	Distance (mi)		
x	у		
0	4		
2	3		
4	2		
6	1		
8	0		

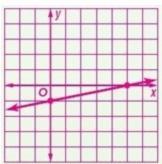
22.

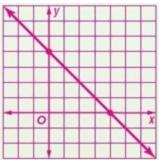

ANSWER:

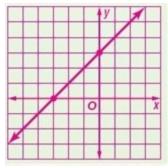
8, 4; The *x*-intercept 8 means that it took Eva 8 minutes to get home. The *y*-intercept 4 means that Eva was initially 4 miles from home.

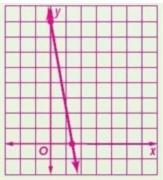

Graph each equation by using the x- and y-intercepts.

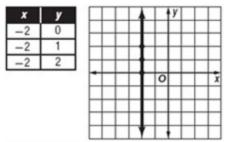
23. y = 4 + 2x






26. x + y = 4





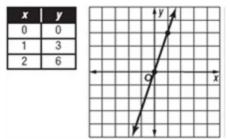
Graph each equation by making a table.

29. x = -2

ANSWER:

30. y = -4

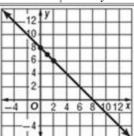
ANSWER:


x	y 1			y	
0	-4			\square	++
1	-4	+++	0	\vdash	+++
2	-4		+	\vdash	++^
	<u> </u>	. +++			++-
					T
				• • •	

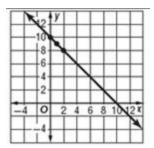
31. y = -8x

ANSWER:

x	y	8 9
-1	8	N6
0	0	 + + + + ₹ + + + + +
1	-8	
	8 1 20	-4-3-2-10 1 2 3 4
		-6



33. y - 8 = -x


ANSWER:

x	y = -x + 8	у	(<i>x</i> , <i>y</i>)
0	y = -(0) + 8	8	(0, 8)
1	y = -(1) + 8	7	(7,7)
2	y = -(2) + 8	6	(2, 6)

34. x = 10 - y

x	y = -x + 10	у	(x, y)
0	y = -(0) + 10	10	(0, 10)
1	y = -(1) + 10	9	(1,9)
2	y = -(2) + 10	8	(2, 8)

35. **TV RATINGS** The number of people who watch a singing competition can be given by p = 0.15v, where *p* represents the number of people in millions who saw the show and *v* is the number of potential viewers in millions.

a. Make a table of values for the points (v, p).

b. Graph the equation.

c. Use the graph to estimate the number of people who saw the show if there are 14 million potential viewers.

d. Explain why it would not make sense for v to be a negative number.

ANSWER:

a.

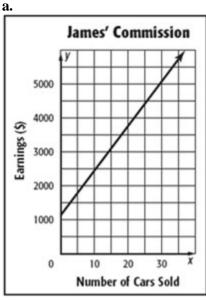
v	p = 0.15v	р	(v, p)	
0	p = 0.15(0)	0	(0, 0)	
2	p = 0.15(2)	0.3	(2, 0.3)	
4	p = 0.15(4)	0.6	(4, 0.6)	
6	p = 0.15(6)	0.9	(6, 0.9)	
8	p = 0.15(8)	1.2	(8, 1.2)	
10	p = 0.15(10)	1.5	(10, 1.5)	

b.

 $\mathbf{c} \cdot \approx 2.1 \text{ million}$

d. There cannot be fewer than 0 viewers.

Determine whether each equation is a linear equation. Write *yes* or *no*. If yes, write the equation in standard form.

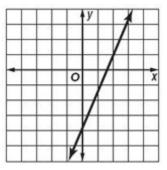

$$36. x + \frac{1}{y} = 7$$

ANSWER:

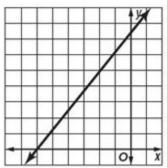
no

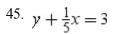
$$37. \frac{x}{2} = 10 + \frac{2y}{3}$$
ANSWER:
yes; $3x - 4y = 60$

- 38. 7n 8m = 4 2mANSWER: yes; 6m - 7n = -439. 3a + b - 2 = bANSWER: yes; 3a = 240. 2r - 3rt + 5t = 1ANSWER: no 41. $\frac{3m}{4} = \frac{2n}{3} - 5$ ANSWER: yes, 9m - 8n = -60
- 42. FINANCIAL LITERACY James earns a monthly salary of \$1200 and a commission of \$125 for each car he sells.
 a. Graph an equation that represents how much James earns in a month in which he sells *x* cars.
 b. Use the enrol to estimate the number of earn James needs to call in order to car \$5000.
 - **b.** Use the graph to estimate the number of cars James needs to sell in order to earn \$5000.



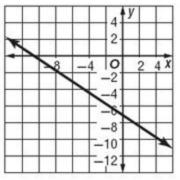
b. about 30 cars


Graph each equation.


43. 2.5x - 4 = y

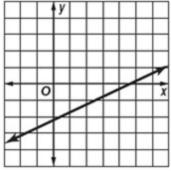
ANSWER:

44. 1.25x + 7.5 = y

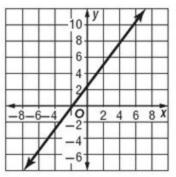


ANSWER:

-15-	+	+	-		+	+
-12-	+	+	+		+	+
19						
₹ š	-		-		-	+.
• 0	3	6	9 1	21	518	2
6-						


$$\frac{46.\ 2}{3}x + y = -7$$

ANSWER:


47. 2x - 3 = 4y + 6

48. 3y - 7 = 4x + 1

ANSWER:

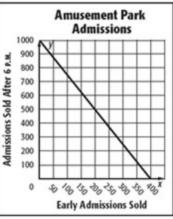
49. CCSS REASONING Mrs. Johnson is renting a car for vacation and plans to drive a total of 800 miles. A rental car company charges \$153 for the week including 700 miles and \$0.23 for each additional mile. If Mrs. Johnson has only \$160 to spend on the rental car, can she afford to rent a car? Explain your reasoning.

ANSWER:

No; sample answer: The rental car would cost \$176. Mrs. Johnson only has \$160 to spend.

50. **AMUSEMENT PARKS** An amusement park charges \$50 for admission before 6 p.m. and \$20 for admission after 6 p.m. On Saturday, the park took in a total of \$20,000.

a. Write an equation that represents the number of admissions that may have been sold. Let x represent the admissions sold before 6 p.m., and let y represent the admissions sold after 6 p.m.


b. Graph the equation.

c. Find the x- and y-intercepts of the graph. What does each intercept represent?

ANSWER:

a. 20,000 = 50x + 20y

c. 400; 1000; The *x*-intercept represents the number of admissions sold before 6 P.M. when no admissions are sold after 6 P.M. The *y*-intercept represents the number of admissions sold after 6 P.M. when no admissions are sold before 6 P.M.

Find the *x*-intercept and *y*-intercept of the graph of each equation.

51. 5x + 3y = 15

ANSWER: 3; 5

52. 2x - 7y = 14

ANSWER: 7; -2

53. 2x - 3y = 5

ANSWER:

$$2\frac{1}{2}; -1\frac{2}{3}$$

54. 6x + 2y = 8

ANSWER:

 $1\frac{1}{3};4$

55. $y = \frac{1}{4}x - 3$ ANSWER: 12; -3 56. $y = \frac{2}{3}x + 1$ ANSWER: $-1\frac{1}{2}; 1$

57. ONLINE GAMES The percent of teens who play online games can be modeled by $p = \frac{15}{4}t + 66.p$ is the percent of students and *t* represents time in years since 2000.

a. Graph the equation.

b. Use the graph to estimate the percent of students playing the games in 2008.

b. 96%